[18, 19] have been further characterised using T-RFLP and 454 pyrosequencing. We found that individuals living in the same environment also tend to develop similar microbiota. Despite of being raised in the same environment and likely
having similar microbiota to begin with, we found, that when hens were transferred to different cages types (conventional cages, furnished cages or aviary) for 2 weeks, minor but uniform changes in the T-RFLP profiles of the microbiota in ileum and caecum occurred. By comparing T-RFLP fingerprints from individual hens, we found highly similar ileal and caecal profiles in hens from same cage, which could be discriminated from other cages in the same experiment. However, the differences were not cage type specific, as when samples from two independent experiments were Anlotinib price compared by PCA, the largest component were observed NCT-501 mouse between experiments, meaning that cage type only had minor influence on the variance. This indicates that the intestinal microbiota
Trichostatin A mouse may be influenced on the contact to the surrounding microbiological environment in the cage. The differences in the evolution of the microbiota were further analysed by deep sequencing of 16S rDNA libraries from pooled caecal samples. When 16 week old laying hens were moved from a floor system and into conventional cages, their caecal microbiota changed towards a less diverse microbiota compared to hens from the same flock that were allocated to aviary and furnished cages. Sequencing of rDNA libraries revealed that hens housed in conventional cages showed a progressive decrease in the number of different OTUs in their caecal microbiota, compared to hens housed in aviary or furnished cages. The decline was already observed after
2 weeks in the cage, and it was even more pronounced after 4 weeks. The same reduction was not observed in the other cage systems. Rucaparib purchase The OTUs that were not recovered in conventional cages were all represented in the other cages, however in low numbers reflecting that they belong to the group of less abundant species. As each OTU represents unique genera or even species, this reflects an overall decrease in diversity of their caecal microbiota towards fewer and more dominating species. Alternative cage systems are characterized by having larger cages due to flock sizes and facilities for enhancing natural behaviour. These facilities may, however, hinder the removal of manure compared to conventional cages, and an overall higher bacterial level has been noted in these systems [1]. It is likely that the laying hens housed in a more contaminated environment, as in the alternative systems, may be more exposed to faeces from the other layers, and thereby continuously being reinoculated, thereby maintaining a higher species variety in the microbiota.