According to the Gibbs-Thomson principle, the atoms would dissolv

According to the Gibbs-Thomson principle, the atoms would dissolve from thin NWs, diffuse over the surface, and finally attach to the large 3D islands, making the 3D islands become larger and the NWs become thinner until they disappear. Chemical composition of the NWs The formation of Mn silicides on a Si substrate can be considered as a diffusion-determined chemical reaction between Mn and Si atoms [29]. The Si atoms that take part in the silicide reaction mainly come from the surface step edges or surface defects because the Si atoms at these places have less Si-Si bonds. In the above paragraphs,

we mentioned that it is relatively easy to grow NWs with a large GSK126 research buy aspect ratio at a high temperature or a low Mn deposition CB-839 research buy rate. This fact indicates that the supply of sufficient free Si atoms per unit time plays an important role in the formation of NWs because more Si atoms can be detached

from the substrate step edges at a high temperature, and the Mn atoms can encounter more Si atoms in the unit time at a low deposition rate. On the contrary, at a relatively low growth temperature or a high deposition rate, the supply of free Si atoms in the unit time is not sufficient and the formation of more 3D islands (Mn silicides rich in manganese) is the result. The Mn-Si binary alloy phase diagram shows that MnSi~1.7 is the only Si-rich silicide phase, and this phase is favored for high concentrations (≥50 at.%) of Si mixed with Mn at temperatures between approximately 400°C and 1,144°C [30]. Therefore, the Si-rich environment for the NW formation

implies that the NWs are likely to be MnSi~1.7. Figure 6a shows a high-resolution STM image of an ultrafine silicide NW grown on the Si(110) surface. A well-ordered atomic arrangement indicates that the silicide NW is single crystal. The atomic arrangement and the period of top atomic row in the wire direction, which is measured to be approximately 7.66 Å, are almost identical to those of the MnSi~1.7 NWs formed on a Tolmetin Si(111) surface [22]. The tunneling current-voltage (I-V) curves measured on top of the NW exhibit a semiconducting character with a bandgap of approximately 0.8 eV (Figure 6b), which is also consistent with that of the MnSi~1.7 NWs formed on the Si(111) surface [21]. Therefore, we deduce that the NWs formed on the Si(110) surface have the same composition as those formed on the Si(111) surface, i.e., the NWs are composed of MnSi~1.7. In order to further confirm this, we employed a click here BE-SEM to examine the chemical composition of the NWs formed on the Si(110) surface. The BE-SEM image provides an intensity map of the BE yield from the specimen. The BE yield increases with the atomic number of the elements encountered by the incident electron beam, i.e., compared to light elements, heavy elements yield more BEs. Therefore, the BE-SEM image reflects the distribution of chemical composition of the specimen.

Comments are closed.