All preparations were

performed as described in legend to

All preparations were

performed as described in legend to Figure 1. Note, increased number of PHB granules in strain H16 compared to strain HF39 at longer growth times. Strain HF39 [(a) 0 min after transfer to fresh NB-gluconate medium; (d), 10 min after transfer; (f) 40 min and (i) 3 hours)]. Strain H16 [(b) 0 min after transfer to fresh NB-gluconate medium; (c) 10 min; (e) 30 min; (g) 1 hour and (h) 3 hours]. Size of bar as indicated. Figure 3 Time course of PHB granule formation in R. eutropha with over-expression of PhaM or eYfp-PhaM. All preparations were performed as described in legend to Figure. 1. Note, over-expression of PhaM resulted in formation of an increased signaling pathway number of small PHB granules. PHB granules generally were in close contact to nucleoid region. Strain H16 with over-expression of PhaM in (a, 0 min; c, 10 min; f, 40 min; h, 60 min; k, 240 min). Strain HF 39 (with over-expression of eYfp-PhaM) (b, 0 min; d, 10 min; e, 20 min; g, 40 min; i, 90 min; j, 180 min). Bar

0.2 μm. Figure 4 Individual cell of R. eutropha H16 with constitutive over-expression of PhaM after 1 h of PHB permissive conditions. Three invaginations of the cell wall (= 4 cells) are a visible indication that the last two cell-divisions have not been finished. All preparations were performed as described in legend to Figure 1. Note, presence of four individual, well-separated clusters of PHB granules apparently each bound to the nucleoid regions of the division-inhibited cell. Bar 0.5 μm. Figure 5 Time course of PHB granule formation in R. eutropha H16 ∆phaM. All preparations learn more were performed as described in legend to Figure 1. Note, deletion of phaM resulted in formation of decreased number of big PHB granules. Incubation times in NB-gluconate PRIMA-1MET mw medium for 0 min (a),

30 min (b), 60 min (c) and 180 min in (d). Bar 0.2 μm. Figure 6 Time course of PHB granule formation in R. eutropha with over-expression of phaP5. All preparations were performed as described in legend to Figure 1. Note, over-expression of phaP5 resulted in formation of two Baf-A1 mouse clusters of 2–5 individual PHB granules. Remarkably, most PHB granules were clearly detached from nucleoid region (arrowheads). Images were prepared from eYfp-PhaP5 over-expressing cells (except for (f) in which PhaM was over-expressed in strain H16) to directly compare with cells of Figure 7. No difference was detectable to R. eutropha H16 cells with over-expression of PhaP5. Incubation times in NB-gluconate medium for 0 min (a), 10 min (b), 20 min (c), 40 min (d), 90 min (e and f), 180 min (g). Bar 0.2 μm. Figure 1 shows representative images of thin sections of R. eutropha H16 at zero time. The cells harvested straight after transfer to fresh medium were rather short rods of about 0.9 μm in length and 0.5 μm in width. Most cells were free of any electron-transparent inclusions. Shortening of cells and consumption of previously accumulated PHB is a typical response of R.

Comments are closed.