Endogenous opioid peptides and receptors are expressed in the BST

Endogenous opioid peptides and receptors are expressed in the BST, but their exact distribution is poorly characterized. The present study used in situ hybridization in order to characterize the endogenous opioid system

selleck inhibitor of the BST focusing on both enkephalin and dynorphin neuropeptides, as well as their respective receptors (mu, delta, and kappa opioid receptors). We report that preprodynorphin mRNA is observed in distinct nuclei of the BST, namely the fusiform, oval and anterior lateral nuclei. In contrast, there is a widespread expression of preproenkephalin mRNA in both anterior and posterior divisions of the BST. Similarly, mu and kappa opioid receptors are broadly expressed in the BST, whereas delta opioid receptor mRNA was observed only in the principal nucleus. For further characterization of enkephalin-expressing neurons of the BST, we performed a double fluorescent in situ hybridization in order to reveal the coexpression of enkephalin peptides and markers of GABAergic and glutamatergic neurons. Although most neurons of the BST are GABAergic, there is also a modest population of glutamatergic cells expressing vesicular glutamate transporter Givinostat 2 (VGLUT2) in specific nuclei of the BST. Finally, we identified

a previously unreported population of enkephalinergic neurons expressing VGLUT2, which is principally located in the posterior BST. (C) 2009 Elsevier Inc. All rights reserved.”
“Patients with schizophrenia experience a loss of temporal continuity or subjective fragmentation along the temporal dimension. Here, we develop the

hypothesis that impaired temporal awareness results from a perturbed structuring of events in time-i.e., canonical neural dynamics. To address this, 26 patients and their matched controls took part in two psychophysical studies using desynchronized audiovisual speech. Two tasks were used and compared: first, check details an identification task testing for multisensory binding impairments in which participants reported what they heard while looking at a speaker’s face; in a second task, we tested the perceived simultaneity of the same audiovisual speech stimuli. In both tasks, we used McGurk fusion and combination that are classic ecologically valid multisensory illusions. First, and contrary to previous reports, our results show that patients do not significantly differ from controls in their rate of illusory reports. Second, the illusory reports of patients in the identification task were more sensitive to audiovisual speech desynchronies than those of controls. Third, and surprisingly, patients considered audiovisual speech to be synchronized for longer delays than controls. As such, the temporal tolerance profile observed in a temporal. judgement task was less of a predictor for sensory binding in schizophrenia than for that obtained in controls.

Comments are closed.