Recent data obtained with mice lacking the

transcription

Recent data obtained with mice lacking the

transcription factor BATF3 (Table 1) indicate that this need not always be the case. Batf3-deficient mice, particularly on a 129/Sv genetic background, exhibit a selective block in the development of CD8α+ DCs and CD103+ CD11b− DCs [28, PD0325901 manufacturer 29]. Notably, these mice display marked defects in the ability to mount cytotoxic T-cell responses to tumors and certain viruses, as well as in resisting parasites such as Toxoplasma gondii [28, 29]. Similarly, DT injection into Clec9a.DTR mice results in resistance to induction of cerebral malaria, probably because of a reduction in priming of Plasmodium-specific CD8+ T cells that induce pathology [29]. Finally, Langerin.DTR and DTA mice have revealed roles for LCs in immune responses and tolerance [14, 18]. Thus, the availability of mouse models for DC-subset depletion sheds light on the role of DC subtypes in immune regulation. CD11c.DTR and CD11c.DOG models are widely used to study the overall role

of DCs irrespective of subset. Importantly, both model systems display neutrophilia and monocytosis upon DT injection [18, 30]. This phenomenon had already been reported by Hochweller et  al. [9], but its functional implications have only recently begun to PD-0332991 concentration be appreciated. For example, a recent study by Tittel et  al. [30] observed increased bacterial clearance in DT-treated CD11c.DTR and CD11c.DOG mice as compared with noninjected controls in a bacterial pyelonephritis model. This unanticipated result was not Selleck Paclitaxel because the presence of DCs restrained bacterial elimination. Rather, it appears to be a by-product of the rapid influx of neutrophils into the kidney upon DT injection. Both CD11c.DTR and CD11c.DOG mice exhibit two waves of neutrophilia: An “early” wave that is manifest 24 h after DT injection and a “late” wave beginning at 72 h after DT injection. The

“early” neutrophilia is due to the release of neutrophils from the bone marrow in response to chemokines CXCL1 and CXCL2 [30]. In contrast, the “late” neutrophilia is a consequence of increased granulopoiesis, likely caused by increased levels of Flt3L (fms-related tyrosine kinase 3 ligand), similar to what has previously been observed in CD11c.DTA mice (Table 1), which constitutively lack DCs [31, 32]. A new CD11c-based DTR mouse model (CD11c.LuciDTR, Table 1) generated by Tittel et  al. [30] exhibits the ‘late’ but not the “”early”" neutrophilia upon DT treatment. Although the mechanism remains elusive, these data imply that the “”early”" neutrophilia does not result from a direct interplay between DC function and neutrophil recruitment, but, rather, relates to the actual mouse model used to deplete DCs.

Comments are closed.