CrossRef 11. Elmalem E, Saunders A, Costi R, Salant A, Banin U: Growth of photocatalytic CdSe-Pt nanorods PF-02341066 manufacturer and nanonets. Adv Mater 2008, 20:4312–4317.CrossRef 12. Morales W, Cason M, Aina O, de Tacconi N, Rajeshwar K: Combustion synthesis and characterization of
nanocrystalline WO 3 . J Am Chem Soc 2008, 130:6318–6319.CrossRef 13. Abe R, Takami H, Murakami N, Ohtani B: Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 2008, 130:7780–7781.CrossRef 14. Xiang Q, Meng G, Zhao H, Zhang Y, Li H, Ma W, Xu J: Au nanoparticle modified WO 3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C 2010, 114:2049–2055.CrossRef 15. Pulgarin C, Kiwi J: Iron oxide-mediated degradation, photodegradation, and CX-4945 clinical trial biodegradation of aminophenols. Langmuir 1995, 11:519–526.CrossRef 16. Xie H, Li Y, Jin S, Han J, Zhao X: Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with MM-102 purchase highly efficient visible light induced photocatalytic activity. J Phys Chem C 2010, 114:9706–9712.CrossRef 17. Zhou X, Yang
H, Wang C, Mao X, Wang Y, Yang Y, Liu G: Visible light induced photocatalytic degradation rhodamine B on one-dimensional iron oxide particles. J Phys Chem C 2010, 114:17051–17061.CrossRef 18. Cha H, Kim S, Lee K: Jung, Kang Y: Single-crystalline porous hematite nanorods: photocatalytic and magnetic properties . J Phys Chem C 2011, 115:19129–19135.CrossRef 19. Zhang Y, Deng B, Zhang T, Gao D, Xu A: Shape effects of Cu 2 O polyhedral microcrystals on photocatalytic activity. Dichloromethane dehalogenase J Phys Chem C 2010, 114:5073–5079.CrossRef 20. Fu H, Pan C, Yao W, Zhu Y:
Visible-light-induced degradation of rhodamine B by nanosized Bi 2 WO 6 . J Phys Chem B 2005, 109:22432–22439.CrossRef 21. Fu H, Zhang S, Xu T, Zhu Y, Chen J: Photocatalytic degradation of RhB by fluorinated Bi 2 WO 6 and distributions of the intermediate products. Environ Sci Technol 2008, 42:2085–2091.CrossRef 22. Li X, Hou Y, Zhao Q, Teng W, Hu X, Chen G: Capability of novel ZnFe 2 O 4 nanotube arrays for visible-light induced degradation of 4-chlorophenol. Chemosphere 2011, 82:581–586.CrossRef 23. Zhou M, Zhu H, Wang X, Xu Y, Tao Y, Hark S, Xiao X, Li Q: CdSe nanotube arrays on ITO via aligned ZnO nanorods templating. Chem Mater 2010, 22:64–69.CrossRef 24. Zhang J, Gao S, Huang B, Dai Y, Wang J, Lu J: Preparation of CdSe nanocrystals with special morphologies. Prog Chem 2010, 22:1901–1910. 25. Wang X, Xu Y, Zhu H, Liu R, Wang H, Li Q: Crystalline Te nanotube and Te nanorods-on-CdTe nanotube arrays on ITO via a ZnO nanorod templating-reaction. Crystengcomm 2011, 13:2955–2959.CrossRef 26. Vayssieres L, Keis K, Lindquist S, Hagfeldt A: Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J Phys Chem B 2001, 105:3350–3352.CrossRef 27. Vayssieres L: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions.