These changes may not be obvious with single toxic or high-dose e

These changes may not be obvious with single toxic or high-dose exposure [11]. Thus, there is the need for in-depth toxicity assessment of this nanocarrier system. Here, it was done using two different concentrations (5 and 500 mg/kg) of the two nanocomposites (ZAL and ZA). The result shown here agreed to a related sub-acute toxicity study results [12] where four different doses of four different sizes of magnesium

aluminium layered hydroxide LDC000067 in vivo nanocomposite given to mice via intra-peritoneal route for 20 days cause neither mortality nor significant body weight change [12]. Gold nanocomposite (GNP) is another example of inorganic nanodelivery systems that are receiving a lot of attention in nanomedicine [13]. Interestingly, oral administration

of GNP to rats produced no marked treatment-related toxicity [14], similar to what was observed here. The nanocomposite was shown to have LD50 value greater than 2,000 mg/kg body weight [14]. Generally, data on the acute, sub-acute and CBL0137 price chronic toxicity of nanoparticles used in nanomedicine has begun, but they are still at preliminary level and patchy [13]. Biochemical parameters in serum Biochemical parameters from serum were measured to Cilengitide price check for any liver and or kidney damage, which may be indicative of injury following repeated doses of the nanodelivery systems. An enzyme of liver mitochondrial and cytosol, aspartate aminotransferase (AST) in ZALH, ZAH and ZAL groups was shown to be elevated compared to VC group, but the difference was not significant (p > 0.05) Mannose-binding protein-associated serine protease (Figure 2A). However, the differences in aspartate aminotransferase/alanine

aminotransferase (AST/ALT) ratio of ZALH and ZAH were statistically significant compare to VC group (p < 0.05). Other biochemical parameters measured from the serum of the treated groups were found to have no statistical significant difference compared to the control group (p > 0.05). Figure 2 Effect of ZAL and ZA on biochemical parameters of rats after oral treatment. Effect of ZAL and ZA on biochemical parameters of rats after oral treatment for twenty eight days using 5 mg/kg and 500 mg/kg doses. (A) Liver enzymes. (B) Renal function tests. All data are expressed as means ± SD and were compared using one-way ANOVA (n = 5). Differences with p < 0.05 are considered statistically significant. From the table, AST in ZALH, ZAH and ZAL was notably elevated compared to VC, but the difference were not significant (p > 0.05). However, the differences in AST/ALT ratio of ZALH (#) and ZAH (#) were statistically significant compare to VC (#) group. Other parameters measured were found to have no statistical significant difference compared to the control group (p > 0.05). ALT (alanine aminotransferase), AST (aspartate aminotransferase), CK (creatine kinase), Creat (Creatinine), GGT (Gamma-glutamyltransferase), Na (sodium), K (potassium), Cl (chloride).

Comments are closed.