There is some evidence for improvement with biofeedback-based int

There is some evidence for improvement with biofeedback-based interventions (two studies). There is conflicting evidence for the benefits of counselling (three studies), psychotherapy (two studies) mindfulness and meditation (two studies), and CBT of less than 6 weeks Tacrolimus in vitro duration (six studies). There is limited evidence regarding relaxation therapy (two studies). Methodological limitations of the reviewed literature included failure of allocation concealment, blinding and conduction of intention-to-treat analysis,

as well as the heterogeneity and choice of outcome measures. Conclusions:  This review shows consistent supportive evidence for the use of disclosure therapy, and CBT with maintenance therapy as adjunct therapies in patients with RA. It also highlights methodological limitations in the current literature and the need for future research in this area. “
“To investigate the value of ultrasonography (US) for diagnosing synovitis associated with rheumatoid arthritis (RA). Bilateral metacarpophalangeal (MCP), proximal interphalangeal (PIP) II–V and wrist joints of 46 RA patients and 35 healthy controls were evaluated by quantitative and semiquantitative

US. Wrists on more severely affected sides of 20 of the 46 patients also underwent magnetic resonance imaging (MRI). The MRI and US results were compared. The US cutoff to distinguish pathology was calculated. The two US methods were compared and the correlation between quantitative methods Selleckchem Doramapimod and clinical serologic markers was analyzed. The imaging techniques (US and MRI) for detecting synovitis produced consistent

results (γ = 0.70–0.77, P < 0.001). When the cutoffs for the MCP and PIP joints were 2.5 and 2.6 mm, respectively; the sensitivities/specificities were 82.8%/85.8% and 98.2%/84.8%, respectively. When the cutoff for the wrist was 5.2 mm, the sensitivity/specificity was 93.4%/93.4%. The average synovial membrane thickness was positively related to biochemical markers erythrocyte sedimentation rate, C-reactive protein, anticyclic citrullinated peptide antibody, and Disease Activity Index of 28 joints (γ = 0.307–0.614; P = 0.020, Benzatropine 0.038, 0.01, < 0.001, respectively) but was poorly related to rheumatoid factor immunoglobulin A (RF-IgA), RF-IgM, and RF-IgG (γ = 0.06–0.115; P = 0.45, 0.45, 0.62, respectively). US is a valid method for diagnosing early-stage synovitis, with high-accuracy cutoffs for MCP, PIP and wrist joints set at 2.5, 2.6 and 5.2 mm. The mean synovial thicknesses of the bilateral wrist, MCP II–IV and PIP II–IV joints can be used to assess disease activity. "
“To compare the health related quality of life (HRQoL) and depression of individuals with rheumatoid arthritis (RA) to healthy controls in Colombia, as well as to examine the connections between these two variables in individuals with RA.

The effect of hypoxia on gene mutations has been examined by seve

The effect of hypoxia on gene mutations has been examined by several mutation assay systems. Reynolds et al. transplanted tumorigenic mouse cells into nude mice or placed the cells under hypoxic conditions in vitro.10 These cells were marked with a lambda shuttle vector containing supF H 89 molecular weight as a reporter for mutations. The results showed a significant increase in point mutations and small deletions in DNA rescued from hypoxic cells transplanted into nude mice, as well as in cells

exposed to hypoxia in tissue cultures. Sixty-two percent of point mutations showed transversion (G > T, G > C and A > C) and 38% were transitions (G > A) in DNA from hypoxic cells. In contrast, the percentage of transition (62%) mutations dominated over transversion mutations (38%) under normoxic conditions.10 Because the major oxidative DNA damage product, 8-oxo-G, can produce transversion mutations (G > C or G > T),46 the observed increase in mutation frequency may check details be caused by oxidative damage. This was supported by Keysar et al., who showed that the free radical scavenger

dimethyl sulfoxide blocked hypoxia-induced gene mutations.82 Because hypoxia itself does not cause DNA damage,55 oxidative stress must be generated during re-oxygenation. Similarly, Rapp-Szabo et al. reported that hypoxia/re-oxygenation increased the mutation frequency of a reporter gene, lacI, integrated into the cellular DNA of cell lines derived from the BigBlue rat.83 They observed a small bias of transversion mutations against transition mutations in hypoxic cells in tissue cultures. These results suggest that H/R increases mutation frequency through oxidative damage and/or suppression of DNA repair, such as base excision repair pathways.84 Three studies have demonstrated that hypoxia generates mutations within microsatellite repeat sequences in mammalian cells. Mihaylova et al. transfected hypoxic HeLa and mouse EMT6 cells with an episomal reporter construct containing poly CA repeats, which disrupt functional β-galactosidase

by out-of frame. When slippage mutations occur within CA repeats and restore a proper reading frame, a rescued construct in bacteria can be positive DNA ligase for lacZ staining. The results showed that a 1.6-fold increase in mutation frequency of CA repeats was induced by hypoxia (<0.001% O2 for 48 h).85 Koshiji et al. showed that the hypoxic (1% O2 for 16 h) MLH1-deficient colon cancer cell line, HCT116, exhibits enhanced microsatellite mutations compared to normoxic cells.86 Rodriguez-Jimenez et al. placed mouse neural and human mesenchymal stem cells under moderate hypoxic conditions (1% O2) for several days. They used plasmid DNA containing out-of-frame poly (CA) repeats similar to the one used by Mihaylova et al. to monitor the effect of hypoxia on microsatellite mutations.

PCRs for each of these ROD were multiplexed with an assay for opr

PCRs for each of these ROD were multiplexed with an assay for oprL

gene as an internal control. P. aeruginosa isolate 039016 (Stewart et al., 2011) was used as a positive control. All reactions were conducted with initial denaturation at 94 °C (5 min), followed by 25 cycles of denaturation (92 °C, 3 min), annealing (58 °C, 1 min) and elongation (72 °C, 2 min), with final elongation at 72 °C (10 min). Independent data comparing genetic features of keraitits isolates in a temporal manner or comparing features of keratitis isolates with nonkeratitis isolates were assessed by chi square double classification with one degree of freedom. AT genotyping of the 60 keratitis-associated P. aeruginosa isolates from 2009 to 2010 yielded hexadecimal codes that were searchable on the published database (Table 1). About 36 (60%) of the isolates Dactolisib nmr analysed in this study were assigned to an existing clone type. This compares with 33 of 63 (52%) isolates from the 2003 to 2004 collection (Stewart et al., 2011). Clone types that did not yield ABT-737 a match in the published database were assigned as ‘novel’ clone types (Table 1; Fig. 1). Nearly 23 novel clone types (representing 25 of 60 isolates) were identified in this study compared to 19 novel clone types (representing 30 of 63 isolates) in the previous study of isolates from 2003 to 2004. The combined prevalence

for the six most common clone types (A, B, C, D, I and V) was similar in the two collections [27 of 60 (45%) in 2009–2010 compared to 24 of 63 (38%) in 2003–2004]. Among keratitis isolates, one novel clone type (C429) was identified at both time points. Two major clusters of P. aeruginosa were identified: cluster

1 and cluster 2 (Fig. 2). About 86 of 123 (71%) keratitis-associated isolates were present within cluster 1, representing 39% (86 of 222) of all isolates in this cluster. Forty-seven of 63 (75%) isolates from 2003 to 2004 and selleck compound 39 of 60 (65%) of the 2009–2010 isolates were found in this cluster. In comparison, 135 of 322 (42%) of the nonkeratitis isolates were within cluster 1, which is significantly reduced (P = 0.001) compared to the percentage of keratitis isolates within the cluster. Hybridisation patterns from all keratitis isolates are given in Table S1. All 60 of the 2009–2010 keratitis isolates carried the PAGI-1 genomic island, a common genomic island found in 85% of clinical isolates (Liang et al., 2001). On the AT chip, PAGI-2- and PAGI-3-like genomic islands were represented by 10 hybridisation signals (Wiehlmann et al., 2007a, b). Overall, 65 of 123 (53%) keratitis isolates lacked PAGI-2/3-like genomic islands compared with 159 of 322 (49%) nonkeratitis P. aeruginosa (Wiehlmann et al., 2007a, b; Mainz et al., 2009; Rakhimova et al., 2009).

In this study, we attempted to investigate the potency of allicin

In this study, we attempted to investigate the potency of allicin against C. albicans, the predominant fungal species isolated from human infections. Allicin alone could exhibit antifungal activity, and when used in synergy with antimicrobial agents, it increased the efficacy of the therapeutic agents (Aala et al., 2010; Khodavandi et al., 2010). For example, combination of allicin

with amphotericin B and fluconazole has been demonstrated to have a significant synergistic effect in a mouse model of systemic candidiasis (An et al., 2009; Guo et al., 2010). Garlic and some of its derivatives destroy the Candida cell membrane integrity (Low Daporinad concentration et al., 2008), inhibit growth (Lemar et al., 2002) and produce oxidative stress (Lemar et al., 2005) in C. albicans. Most of these abilities are related to an SH-modifying potential, because the activated disulfide bond of allicin has an effect on thiol-containing Dabrafenib purchase compounds such as some proteins; however, the main targets of allicin on Candida are not well understood. It has been demonstrated that the antifungal activity

of allicin in vivo may be related to some secondary metabolites such as ajoene, diallyl trisulfide and diallyl disulfide, because the chemical structure of allicin is too unstable and converts to these secondary products immediately (Miron et al., 2004). Nonetheless, little is known about the potential in vivo activity of allicin against Candida. In this study, we used fluconazole as the standard anticandidal drug for comparison against allicin. The MICs of allicin Cobimetinib in vivo and fluconazole against C. albicans fell within the ranges 0.05–12 and 0.25–16 μg mL−1, respectively (Table 1), which is similar to findings from previous reports (Ankri & Mirelman, 1999; Khodavandi et al., 2010). All of the samples were sensitive to fluconazole and drug resistance was not seen. The time–kill study demonstrated a significant inhibition of Candida growth comparing untreated controls against those treated with allicin

and fluconazole, using inoculum sizes of 1 × 106 Candida cells mL−1 (P<0.05) and 1 × 104 Candida cells mL−1 (P<0.001) after 2- and 4-h incubation, respectively. This demonstrates that allicin decreased the growth of C. albicans almost as efficiently as fluconazole (P>0.05) for both inoculum sizes of Candida, demonstrating a comparable ability to inhibit the growth of the yeast cells (Fig. 1). The presence of pits on the cell surface and cellular collapse with high concentrations of allicin indicates that the cell membrane could be one of the targets of allicin in Candida (Lemar et al., 2002), whereas fluconazole in high concentrations can destroy the Candida cell entirely (Fig. 2).

, 2000; Naim et al, 2001) Mature forms of TDH and TRH consist o

, 2000; Naim et al., 2001). Mature forms of TDH and TRH consist of 165 amino acids with a pair of intramolecular disulfide bonds between cysteine moieties in positions 151 and 161 (Iida & Honda, 1997). TDH-positive V. parahaemolyticus is hemolytic on Wagatsuma agar, which is a special type of blood agar; this effect is known as the Kanagawa phenomenon (Miwatani et al., 1972; Okuda & Nishibuchi, 1998). Electron microscopic observations indicated that TDH formed pore-like structures on the surface of erythrocyte membranes (Honda et al., 1992). Furthermore, when lipid bilayers were treated with TDH, single channel pore formation was observed (Hardy et al., 2004). In addition, Miwatani reported

that heating crude TDH at 60 °C inactivated its hemolytic activity but the activity was restored by rapid cooling from the denatured state at 90 °C (Miwatani

et al., 1972). This paradoxical phenomenon check details is known as PI3K assay the Arrhenius effect, which was originally reported with the α-hemolysin of Staphylococcus aureus by S.A. Arrhenius in 1907 (Arrhenius, 1907). We have previously determined that the underlying molecular mechanism mediating the Arrhenius effect in TDH is the reversibility of amyloid fibril formation upon heating of TDH (Fukui et al., 2005). On the other hand, TRH lost its hemolytic activity upon heating at 90 °C, suggesting that TRH activity is not associated with the Arrhenius effect in the same way as TDH (Honda et al., 1988). We have also previously identified the C4-symmetric tetrameric structure of TDH and its model in low solutions using

small-angle X-ray scattering, ultracentrifugation, and transmission electron microscopy (Hamada et al., 2007), and presented the crystal structure of TDH tetramers with a central pore at a 1.5 Å resolution (Yanagihara et al., 2010). Single amino acid substitutions of TDH showed that π-cation interactions between R46 and Y140 played an important role in maintaining the tetrameric structure, whereas the monomeric mutant, R46E, lost its hemolytic activity (Yanagihara et al., 2010). TRH shares antigenicity in part with TDH. Hybridization tests with trh gene-specific Florfenicol probes showed that trh gene had nucleotide sequence variations, trh1 and trh2 gene, in clinical strains (Nishibuchi et al., 1989; Kishishita et al., 1992). The trh1 gene is 84% homologous to the trh2 gene, and its nucleotide sequence analysis indicated that it shares 68% homology with tdh gene. The amino acid sequence of trh1 gene also shares 63% homology with that of tdh gene (Nishibuchi et al., 1989). However, detailed structural analysis and the association state of native TRH remain unclear. Protein aggregation and amyloid formation are related to many protein conformational diseases, including Alzheimer’s, Huntington’s, and Parkinson’s disease (Bucciantini et al., 2002; Quist et al., 2005).

Forward [f] and reverse [r] primer pairs: CB58 [f] and CB57 [r] (

Forward [f] and reverse [r] primer pairs: CB58 [f] and CB57 [r] (icmW–CBU1651–icmX), CB59 [f] and CB60 [r] (icmV–dotA), CB718 [f] and CB716 [r] (dotA–CBU1647), CB603 [f] and CB602 [r] (dotB–CBU1646), selleck kinase inhibitor CB63 [f] and CB64 [r] (dotD–dotC–dotB), and CB62 [f] and CB61 [r] (icmT–icmS–dotD), were used to demonstrate transcriptional linkage. RT-PCR analysis of icmT, icmV, and icmW ORFs was performed using CB78 [f] and CB79 [r], CB70 [f] and CB71 [r], and CB40 [f] and CB41 [r], respectively. Oligonucleotide primers

(Table 1) for RT-qPCR analysis of icmX, icmW, icmV, dotA, dotB, and icmT were designed using primer3plus (Andreas Untergasser et al., 2007). The primer efficiency of all primer sets were within the efficiency window for the calculation method (Livak & Schmittgen, 2001; Schmittgen & Livak, 2008). Single-step RT-qPCR analysis using SuperScript III (Invitrogen) reverse transcriptase and the SYBR Green Master Mix Kit (Applied Biosystems) was performed on an ABI 7500 cycler. Each reaction contained 15 μL total volume and 20 ng total RNA. To calculate the relative temporal RNA

expression fold changes over the time course, to each individual gene was used, respectively. For each gene, the respective mean time-zero cycle threshold (CT) value was used as INNO-406 in vivo the baseline reference point for all other (respective) mean time point CT values over the evaluation period. Therefore, for each individual gene, their relative fold expression at each time point is internally referenced to time zero RNA levels. Each time-zero point

has been referenced to themselves, resulting in a calculated fold value of 1. Statistical significance between the time points was evaluated by single-factor anova with a 95% confidence interval using ms excel 2007 (Microsoft). A P-value of <0.05 was considered significant. Recombinant C. burnetii IcmT  and protein-specific antibody were the same as described previously (Morgan et al., 2010). Briefly, to ensure specificity, the rabbit sera against recombinant C. burnetii IcmT were absorbed against Vero cell lysates as well as the Escherichia coli DH5α expression strain to remove cross-reactive antibodies. This antibody was designated RαIcmT. For immunoblot analysis, purified C. burnetii NMII was pelleted and resuspended in protein lysis/running buffer [Tris-HCl, pH 6.8, 62.5 mM, GNAT2 sodium dodecyl sulfate (SDS) 2%, glycerol 25%, bromophenol blue 0.01%, and 2-mercaptoethanol 5% added before loading]. Protein representing 108C. burnetii genome equivalents and 104 Vero cells, respectively, was separated by 16% SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane (Whatman, Dassel, Germany) along with a protein ladder (Bio-Rad, Hercules, CA). Immunoblot analysis was carried out using a Pico Western Chemilluominescent Kit (Pierce, Rockford, IL) following the manufacturer’s directions using the RαIcmT primary antibody at a 1 : 1000 dilution in a hybridization buffer.

During the exponential growth phase, high PPi levels (approximate

During the exponential growth phase, high PPi levels (approximately

4 ± 2 mM) and relatively low ATP levels (0.43 ± 0.07 mM) were found, and the PPi/ATP ratio decreased 13-fold when the cells entered the stationary phase. Pyruvate kinase activity appeared to be allosterically affected by PPi. Altogether, these findings suggest an important role for PPi in the central energy metabolism of C. saccharolyticus. The extremely thermophilic and strictly anaerobic bacterium Caldicellulosiruptor saccharolyticus belongs to the class of the Clostridia. This bacterium has potential for industrial applications because selleck compound of its ability (1) to produce high hydrogen levels (de Vrije et al., 2007), (2) to grow on complex lignocellulosic material (Ivanova et al.,

2008; de Vrije et al., 2009) and (3) to cometabolize a number of monosaccharides without revealing any form of carbon catabolite repression (van de Werken et al., 2008; VanFossen et al., 2009). For these reasons, C. saccharolyticus recently became the subject of various research projects focusing on renewable energy production (van Niel et al., 2002; Ivanova et al., 2008; de Vrije et al., 2009). The classical Embden–Meyerhof (EM) pathway is the main route of glycolysis in this organism (de Vrije et al., 2007), and analysis of the C. saccharolyticus genome sequence has revealed the presence of all the EM-pathway enzymes (van de Werken et al., 2008). However, the authors of this study indicated further that the C. saccharolyticus genome contains genes coding for an inorganic Selleck Bortezomib pyrophosphate (PPi)-dependent pyruvate phosphate dikinase (PPDK) in addition to the pyruvate kinase (PK). Genes coding for typical gluconeogenic enzymes such as pyruvate water dikinase (or PEP synthase) and fructose bisphosphatase Selleckchem Decitabine are absent (van de Werken et al., 2008). Interestingly, recent studies on the acetate–lactate metabolic shift in C. saccharolyticus revealed that PPi is a strong modulator of the lactate dehydrogenase (LDH) (Willquist & van Niel, 2010). These observations motivated us to investigate

the role of PPi in the energy metabolism of C. saccharolyticus. PPi-dependent reactions have regularly been described for plants and primitive eukaryotes (Heinonen, 2001). However, little is known about PPi dependency in heterotrophic prokaryotes. Caldicellulosiruptor saccharolyticus DSM 8903 (Rainey et al., 1994) was purchased from the Deutsche Sammlung von Mikroorganismen und Zellkulturen. For the enzyme and nucleotide measurements, cell extracts (CEs) were prepared from C. saccharolyticus cells, which were cultured batchwise in pH-controlled reactors and in a medium as described previously (van de Werken et al., 2008; Willquist et al., 2009), using glucose as a carbon source (4 g L−1 for the determination of enzyme levels and 10 g L−1 for the determination of nucleotide levels). For the determination of nucleotide levels, the working volume was 1.7 L to minimize the effect of sampling on the culture.

During the exponential growth phase, high PPi levels (approximate

During the exponential growth phase, high PPi levels (approximately

4 ± 2 mM) and relatively low ATP levels (0.43 ± 0.07 mM) were found, and the PPi/ATP ratio decreased 13-fold when the cells entered the stationary phase. Pyruvate kinase activity appeared to be allosterically affected by PPi. Altogether, these findings suggest an important role for PPi in the central energy metabolism of C. saccharolyticus. The extremely thermophilic and strictly anaerobic bacterium Caldicellulosiruptor saccharolyticus belongs to the class of the Clostridia. This bacterium has potential for industrial applications because find more of its ability (1) to produce high hydrogen levels (de Vrije et al., 2007), (2) to grow on complex lignocellulosic material (Ivanova et al.,

2008; de Vrije et al., 2009) and (3) to cometabolize a number of monosaccharides without revealing any form of carbon catabolite repression (van de Werken et al., 2008; VanFossen et al., 2009). For these reasons, C. saccharolyticus recently became the subject of various research projects focusing on renewable energy production (van Niel et al., 2002; Ivanova et al., 2008; de Vrije et al., 2009). The classical Embden–Meyerhof (EM) pathway is the main route of glycolysis in this organism (de Vrije et al., 2007), and analysis of the C. saccharolyticus genome sequence has revealed the presence of all the EM-pathway enzymes (van de Werken et al., 2008). However, the authors of this study indicated further that the C. saccharolyticus genome contains genes coding for an inorganic Apoptosis inhibitor pyrophosphate (PPi)-dependent pyruvate phosphate dikinase (PPDK) in addition to the pyruvate kinase (PK). Genes coding for typical gluconeogenic enzymes such as pyruvate water dikinase (or PEP synthase) and fructose bisphosphatase Amisulpride are absent (van de Werken et al., 2008). Interestingly, recent studies on the acetate–lactate metabolic shift in C. saccharolyticus revealed that PPi is a strong modulator of the lactate dehydrogenase (LDH) (Willquist & van Niel, 2010). These observations motivated us to investigate

the role of PPi in the energy metabolism of C. saccharolyticus. PPi-dependent reactions have regularly been described for plants and primitive eukaryotes (Heinonen, 2001). However, little is known about PPi dependency in heterotrophic prokaryotes. Caldicellulosiruptor saccharolyticus DSM 8903 (Rainey et al., 1994) was purchased from the Deutsche Sammlung von Mikroorganismen und Zellkulturen. For the enzyme and nucleotide measurements, cell extracts (CEs) were prepared from C. saccharolyticus cells, which were cultured batchwise in pH-controlled reactors and in a medium as described previously (van de Werken et al., 2008; Willquist et al., 2009), using glucose as a carbon source (4 g L−1 for the determination of enzyme levels and 10 g L−1 for the determination of nucleotide levels). For the determination of nucleotide levels, the working volume was 1.7 L to minimize the effect of sampling on the culture.

During the exponential growth phase, high PPi levels (approximate

During the exponential growth phase, high PPi levels (approximately

4 ± 2 mM) and relatively low ATP levels (0.43 ± 0.07 mM) were found, and the PPi/ATP ratio decreased 13-fold when the cells entered the stationary phase. Pyruvate kinase activity appeared to be allosterically affected by PPi. Altogether, these findings suggest an important role for PPi in the central energy metabolism of C. saccharolyticus. The extremely thermophilic and strictly anaerobic bacterium Caldicellulosiruptor saccharolyticus belongs to the class of the Clostridia. This bacterium has potential for industrial applications because R428 datasheet of its ability (1) to produce high hydrogen levels (de Vrije et al., 2007), (2) to grow on complex lignocellulosic material (Ivanova et al.,

2008; de Vrije et al., 2009) and (3) to cometabolize a number of monosaccharides without revealing any form of carbon catabolite repression (van de Werken et al., 2008; VanFossen et al., 2009). For these reasons, C. saccharolyticus recently became the subject of various research projects focusing on renewable energy production (van Niel et al., 2002; Ivanova et al., 2008; de Vrije et al., 2009). The classical Embden–Meyerhof (EM) pathway is the main route of glycolysis in this organism (de Vrije et al., 2007), and analysis of the C. saccharolyticus genome sequence has revealed the presence of all the EM-pathway enzymes (van de Werken et al., 2008). However, the authors of this study indicated further that the C. saccharolyticus genome contains genes coding for an inorganic selleck kinase inhibitor pyrophosphate (PPi)-dependent pyruvate phosphate dikinase (PPDK) in addition to the pyruvate kinase (PK). Genes coding for typical gluconeogenic enzymes such as pyruvate water dikinase (or PEP synthase) and fructose bisphosphatase Morin Hydrate are absent (van de Werken et al., 2008). Interestingly, recent studies on the acetate–lactate metabolic shift in C. saccharolyticus revealed that PPi is a strong modulator of the lactate dehydrogenase (LDH) (Willquist & van Niel, 2010). These observations motivated us to investigate

the role of PPi in the energy metabolism of C. saccharolyticus. PPi-dependent reactions have regularly been described for plants and primitive eukaryotes (Heinonen, 2001). However, little is known about PPi dependency in heterotrophic prokaryotes. Caldicellulosiruptor saccharolyticus DSM 8903 (Rainey et al., 1994) was purchased from the Deutsche Sammlung von Mikroorganismen und Zellkulturen. For the enzyme and nucleotide measurements, cell extracts (CEs) were prepared from C. saccharolyticus cells, which were cultured batchwise in pH-controlled reactors and in a medium as described previously (van de Werken et al., 2008; Willquist et al., 2009), using glucose as a carbon source (4 g L−1 for the determination of enzyme levels and 10 g L−1 for the determination of nucleotide levels). For the determination of nucleotide levels, the working volume was 1.7 L to minimize the effect of sampling on the culture.

, 1994) In a previous study, we demonstrated that P sordida YK-

, 1994). In a previous study, we demonstrated that P. sordida YK-624 produces MnP (Hirai et al., 1994, 1995) and LiP (Sugiura et al., 2003; learn more Machii et al., 2004; Hirai et al., 2005) as ligninolytic enzymes. Recently, gene transformation systems for several species of white-rot fungi have been developed for the overproduction of ligninolytic enzymes and facilitating structure–function studies of these enzymes by site-directed mutagenesis (Mayfield et al., 1994;

Tsukamoto et al., 2003; Tsukihara et al., 2006). We previously constructed a gene transformation system for P. sordida YK-624 using the glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter for the heterologous

expression of enhanced green fluorescent protein (EGFP) (Yamagishi et al., 2007) and the homologous expression of recombinant LiP (Sugiura et al., 2009); notably, the ligninolytic activity and selectivity of the transformant expressing LiP were markedly higher than those of wild type (Sugiura et al., 2010). However, selleck chemicals llc explorations of more effective expression promoters and investigations of proteins involved in lignin degradation are essential to breedings of superior lignin-degrading fungi. In this study, we attempted to isolate the promoter region of a protein that is highly expressed by P. sordida YK-624 under wood-rotting conditions for the overproduction of ligninolytic enzymes using this promoter in woody biomass cultivation. Moreover, the ligninolytic properties of a transformant that overproduces MnP under wood-rotting conditions were examined in detail. Phanerochaete sordida YK-624 (ATCC 90872), uracil auxotrophic strain UV-64 (Yamagishi et al., 2007), recombinant YK-LiP2-overexpression else transformant A-11 (Sugiura et al., 2009), and P. chrysosporium ME-446 (ATCC 34541) were used in this study. A suspension consisting of 1 g ethanol-treated beech wood meal (60–80 mesh) and 2.5 mL distilled water in a 100-mL Erlenmeyer flask was inoculated with P. sordida

YK-624 and then incubated at 30 °C for 10 days. Proteins were extracted from four fungal-inoculated wood meal suspensions by adding 100 mL extraction buffer (50 mM sodium phosphate, 0.5 mM phenylmethylsulfonyl fluoride, and 0.05% Tween 80) and stirring for 2 h at 4 °C. Soluble proteins were separated by filtering the suspension through a 0.2-μm membrane filter (Advantec). For the removal of phenolic compounds, 1 g acid-treated polyvinyl polypyrrolidone (Charmont et al., 2005) was added to the solution over a 2-h period with constant stirring at 4 °C, and residue was removed by filtering. Proteins precipitated between 30% and 80% saturation of ammonium sulfate were obtained by centrifugation of the solution at 15 000 g for 30 min at 4 °C.